Characterization of novel CYP2A6 polymorphic alleles (CYP2A6*18 and CYP2A6*19) that affect enzymatic activity.

نویسندگان

  • Tatsuki Fukami
  • Miki Nakajima
  • Eriko Higashi
  • Hiroyuki Yamanaka
  • Haruko Sakai
  • Howard L McLeod
  • Tsuyoshi Yokoi
چکیده

Genetic polymorphisms of CYP2A6 gene are known as a causal factor of the interindividual differences in nicotine metabolism. We found three novel CYP2A6 alleles. The CYP2A6(*)18A allele has a single nucleotide polymorphism (SNP) of A5668T (A1175T, Y392F) in exon 8. The CYP2A6(*)18B allele has synonymous SNPs of G51A (G51A), T5684C (T1191C), and T5702C (T1209C) in addition to A5668T (A1175T, Y392F). The CYP2A6(*)19 allele has the SNPs of A5668T (A1175T, Y392F), T6354C (intron 8), and T6558C (T1412C, I471T) as well as the conversion with the CYP2A7 sequence in the 3'-untranslated region, in which the latter two changes correspond to CYP2A6(*)7. Ethnic differences in the frequencies of these alleles were observed between whites, African-Americans, Japanese, and Koreans. Wild or variant CYP2A6 (CYP2A6(*)18, CYP2A6(*)19, and CYP2A6(*)7) were expressed in Escherichia coli. For coumarin 7-hydroxylation and 5-fluorouracil formation from tegafur, the K(m) values were increased, and V(max) values were decreased in CYP2A6.18 compared with those in CYP2A6.1, resulting in decreased clearance to 50 and 35% of that of the wild type, respectively. The K(m) and V(max) values for nicotine C-oxidation were both increased, resulting in no change of clearance. In CYP2A6.19, the effects on the coumarin 7-hydroxylation and 5-fluorouracil formation (increased K(m) and decreased V(max)) were prominent, resulting in decreased clearance to 8% of those of the wild type. For nicotine C-oxidation, the K(m) and V(max) values were both decreased, resulting in decreased clearance to 30% of that of the wild type. The changes of the kinetics in CYP2A6.19 were similar to those in CYP2A6.7. In vivo nicotine metabolism was evaluated in whites (n = 56) and Koreans (n = 40). Although the CYP2A6(*)18 and CYP2A6(*)19 alleles were found only heterozygously, a subject with CYP2A6(*)7/CYP2A6(*)19 showed a lower cotinine/nicotine ratio of the plasma concentration compared with homozygotes of the CYP2A6(*)1A, supporting the in vitro results that the CYP2A6(*)19 allele leads to decreased enzymatic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibitory Potency of 8-Methoxypsoralen on Cytochrome P450 2A6 (CYP2A6) Allelic Variants CYP2A6*15, CYP2A6*16, CYP2A6*21 and CYP2A6*22: Differential Susceptibility Due to Different Sequence Locations of the Mutations

Human cytochrome P450 2A6 (CYP2A6) is a highly polymorphic isoform of CYP2A subfamily. Our previous kinetic study on four CYP2A6 allelic variants (CYP2A6 15, CYP2A6 16, CYP2A6 21 and CYP2A6 22) have unveiled the functional significance of sequence mutations in these variants on coumarin 7-hydroxylation activity. In the present study, we further explored the ability of a typical CYP2A6 inhibitor...

متن کامل

Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations.

Human cytochrome P450 (CYP) 2A6 metabolizes nicotine to cotinine and is a possible modulator of nicotine addiction. Quantitative and qualitative differences in nicotine addiction have been observed between ethnic groups. However, there are few data on the ethnic influences of the CYP2A6-nicotine metabolism relationship, particularly with regard to black subjects. We determined the nicotine meta...

متن کامل

CYP2A6 gene polymorphisms impact to nicotine metabolism

Nicotine is a major addictive compound in tobacco cigarette smoke. After being absorbed by the lung nicotine is rapidly metabolized and mainly inactivated to cotinine by hepatic cytochrome P450 2A6 (CYP2A6) enzyme. Genetic polymorphisms in CYP2A6 may play a role in smoking behavior and nicotine dependence. CYP2A6*1A is the wild type of the CYP2A6 gene which is associated with normal or extensiv...

متن کامل

CYP2A6 genetic polymorphism and its relation to risk of smoking dependence in male Iranians

Introduction: Nicotine is the psychoactive substance responsible for establishing and maintaining smoking dependence. CYP2A6 is the primary enzyme that inactivates nicotine to cotinine .Genetic variation in CYP2A6 accounts for some of the inter-individual variability in nicotine metabolism and has been indicated to influence smoking behavior and dependence. Therefore, the aim of this study was ...

متن کامل

A novel duplication type of CYP2A6 gene in African-American population.

Human CYP2A6 is responsible for the metabolism of nicotine and its genetic polymorphisms affect smoking behavior and risk of lung cancer. In the present study, we identified a novel type of CYP2A6 gene duplication that is created through an unequal crossover event with the CYP2A7 gene at 5.2 to 5.6 kilobases downstream from the stop codon. The novel duplication type of CYP2A6 was found in Afric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 33 8  شماره 

صفحات  -

تاریخ انتشار 2005